Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 927
Filtrar
1.
Planta ; 259(6): 142, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702456

RESUMO

MAIN CONCLUSION: PLDα1 promoted H2S production by positively regulating the expression of LCD. Stomatal closure promoted by PLDα1 required the accumulation of H2S under drought stress. Phospholipase Dα1 (PLDα1) acting as one of the signal enzymes can respond to drought stress. It is well known that hydrogen sulfide (H2S) plays an important role in plant responding to biotic or abiotic stress. In this study, the functions and relationship between PLDα1 and H2S in drought stress resistance in Arabidopsis were explored. Our results indicated that drought stress promotes PLDα1 and H2S production by inducing the expression of PLDα1 and LCD genes. PLDα1 and LCD enhanced plant tolerance to drought by regulating membrane lipid peroxidation, proline accumulation, H2O2 content and stomatal closure. Under drought stress, the H2O2 content of PLDα1-deficient mutant (pldα1), L-cysteine desulfhydrase (LCD)-deficient mutant (lcd) was higher than that of ecotype (WT), the stomatal aperture of pldα1 and lcd was larger than that of WT. The transcriptional and translational levels of LCD were lower in pldα1 than that in WT. Exogenous application of the H2S donor NaHS or GYY reduced the stomatal aperture of WT, pldα1, PLDα1-CO, and PLDα1-OE lines, while exogenous application of the H2S scavenger hypotaurine (HT) increased the stomatal aperture. qRT-PCR analysis of stomatal movement-related genes showed that the expression of CAX1, ABCG5, SCAB1, and SLAC1 genes in pldα1 and lcd were down-regulated, while ACA1 and OST1 gene expression was significantly up-regulated. Thus, PLDα1 and LCD are required for stomatal closure to improve drought stress tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Secas , Regulação da Expressão Gênica de Plantas , Sulfeto de Hidrogênio , Fosfolipase D , Estômatos de Plantas , Arabidopsis/genética , Arabidopsis/fisiologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Fosfolipase D/metabolismo , Fosfolipase D/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sulfeto de Hidrogênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico/genética , Prolina/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Peroxidação de Lipídeos
2.
Biomolecules ; 14(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38672447

RESUMO

Phospholipids are widely utilized in various industries, including food, medicine, and cosmetics, due to their unique chemical properties and healthcare benefits. Phospholipase D (PLD) plays a crucial role in the biotransformation of phospholipids. Here, we have constructed a super-folder green fluorescent protein (sfGFP)-based phospholipase D (PLD) expression and surface-display system in Escherichia coli, enabling the surface display of sfGFP-PLDr34 on the bacteria. The displayed sfGFP-PLDr34 showed maximum enzymatic activity at pH 5.0 and 45 °C. The optimum Ca2+ concentrations for the transphosphatidylation activity and hydrolysis activity are 100 mM and 10 mM, respectively. The use of displayed sfGFP-PLDr34 for the conversion of phosphatidylcholine (PC) and L-serine to phosphatidylserine (PS) showed that nearly all the PC was converted into PS at the optimum conditions. The displayed enzyme can be reused for up to three rounds while still producing detectable levels of PS. Thus, Escherichia coli/sfGFP-PLD shows potential for the feasible industrial-scale production of PS. Moreover, this system is particularly valuable for quickly screening higher-activity PLDs. The fluorescence of sfGFP can indicate the expression level of the fused PLD and changes that occur during reuse.


Assuntos
Escherichia coli , Proteínas de Fluorescência Verde , Fosfatidilserinas , Fosfolipase D , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfolipase D/metabolismo , Fosfolipase D/genética , Fosfatidilserinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Cálcio/metabolismo , Concentração de Íons de Hidrogênio , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/biossíntese
3.
Plant Physiol Biochem ; 210: 108600, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593488

RESUMO

Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.


Assuntos
Arabidopsis , Homeostase , Fosfolipase D , Proteínas de Plantas , Populus , Espécies Reativas de Oxigênio , Estresse Salino , Sódio , Populus/metabolismo , Populus/genética , Populus/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Estresse Salino/genética , Fosfolipase D/metabolismo , Fosfolipase D/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Técnicas do Sistema de Duplo-Híbrido
4.
J Exp Clin Cancer Res ; 43(1): 57, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403587

RESUMO

BACKGROUND: Hypoxia in solid tumors is an important source of chemoresistance that can determine poor patient prognosis. Such chemoresistance relies on the presence of cancer stem cells (CSCs), and hypoxia promotes their generation through transcriptional activation by HIF transcription factors. METHODS: We used ovarian cancer (OC) cell lines, xenograft models, OC patient samples, transcriptional databases, induced pluripotent stem cells (iPSCs) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). RESULTS: Here, we show that hypoxia induces CSC formation and chemoresistance in ovarian cancer through transcriptional activation of the PLD2 gene. Mechanistically, HIF-1α activates PLD2 transcription through hypoxia response elements, and both hypoxia and PLD2 overexpression lead to increased accessibility around stemness genes, detected by ATAC-seq, at sites bound by AP-1 transcription factors. This in turn provokes a rewiring of stemness genes, including the overexpression of SOX2, SOX9 or NOTCH1. PLD2 overexpression also leads to decreased patient survival, enhanced tumor growth and CSC formation, and increased iPSCs reprograming, confirming its role in dedifferentiation to a stem-like phenotype. Importantly, hypoxia-induced stemness is dependent on PLD2 expression, demonstrating that PLD2 is a major determinant of de-differentiation of ovarian cancer cells to stem-like cells in hypoxic conditions. Finally, we demonstrate that high PLD2 expression increases chemoresistance to cisplatin and carboplatin treatments, both in vitro and in vivo, while its pharmacological inhibition restores sensitivity. CONCLUSIONS: Altogether, our work highlights the importance of the HIF-1α-PLD2 axis for CSC generation and chemoresistance in OC and proposes an alternative treatment for patients with high PLD2 expression.


Assuntos
Neoplasias Ovarianas , Fosfolipase D , Feminino , Humanos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fatores de Transcrição/metabolismo , Fosfolipase D/genética , Hipóxia Tumoral , Animais
5.
Adv Biol Regul ; 91: 101000, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081756

RESUMO

Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.


Assuntos
Fosfolipase D , Humanos , Animais , Fosfolipase D/genética , Fosfolipase D/metabolismo , Plantas , Transdução de Sinais , Ácidos Fosfatídicos/metabolismo , Colina , Mamíferos/metabolismo
6.
Adv Biol Regul ; 91: 100988, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37845091

RESUMO

Phospholipase D (PLD) is an enzyme that catalyzes the hydrolysis of phosphatidylcholine into phosphatidic acid and free choline. In mammals, PLD exists in two well-characterized isoforms, PLD1 and PLD2, and it plays pivotal roles as signaling mediators in various cellular functions, such as cell survival, differentiation, and migration. These isoforms are predominantly expressed in diverse cell types, including many immune cells, such as monocytes and macrophages, as well as non-immune cells, such as epithelial and endothelial cells. Several previous studies have revealed that the stimulation of these cells leads to an increase in PLD expression and its enzymatic products, potentially influencing the pathological responses in a wide spectrum of diseases. Metabolic diseases, exemplified by conditions, such as diabetes, obesity, hypertension, and atherosclerosis, pose significant global health challenges. Abnormal activation or dysfunction of PLD emerges as a potential contributing factor to the pathogenesis and progression of these metabolic disorders. Therefore, it is crucial to thoroughly investigate and understand the intricate relationship between PLD and metabolic diseases. In this review, we provide an in-depth overview of the functional roles and molecular mechanisms of PLD involved in metabolic diseases. By delving into the intricate interplay between PLD and metabolic disorders, this review aims to offer insights into the potential therapeutic interventions.


Assuntos
Doenças Metabólicas , Fosfolipase D , Animais , Humanos , Fosfolipase D/genética , Fosfolipase D/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais , Isoformas de Proteínas/metabolismo , Doenças Metabólicas/genética , Mamíferos/metabolismo
7.
BMC Genomics ; 24(1): 730, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049721

RESUMO

BACKGROUND: Venom phospholipase D (PLDs), dermonecrotic toxins like, are the major molecules in the crude venom of scorpions, which are mainly responsible for lethality and dermonecrotic lesions during scorpion envenoming. The purpose of this study was fivefold: First, to identify transcripts coding for venom PLDs by transcriptomic analysis of the venom glands from Androctonus crassicauda, Hottentotta saulcyi, and Hemiscorpius lepturus; second, to classify them by sequence similarity to known PLDs and motif extraction method; third, to characterize scorpion PLDs; fourth to structural homology analysis with known dermonecrotic toxins; and fifth to investigate phylogenetic relationships of the PLD proteins. RESULTS: We found that the venom gland of scorpions encodes two PLD isoforms: PLD1 ScoTox-beta and PLD2 ScoTox-alpha I. Two highly conserved regions shared by all PLD1s beta are GAN and HPCDC (HX2PCDC), and the most important conserved regions shared by all PLD2s alpha are two copies of the HKDG (HxKx4Dx6G) motif. We found that PLD1 beta is a 31-43 kDa acidic protein containing signal sequences, and PLD2 alpha is a 128 kDa basic protein without known signal sequences. The gene structures of PLD1 beta and PLD2 alpha contain 6 and 21 exons, respectively. Significant structural homology and similarities were found between the modeled PLD1 ScoTox-beta and the crystal structure of dermonecrotic toxins from Loxosceles intermedia. CONCLUSIONS: This is the first report on identifying PLDs from A. crassicauda and H. saulcyi venom glands. Our work provides valuable insights into the diversity of scorpion PLD genes and could be helpful in future studies on recombinant antivenoms production.


Assuntos
Fosfolipase D , Venenos de Escorpião , Animais , Fosfolipase D/genética , Fosfolipase D/metabolismo , Escorpiões/genética , Filogenia , Isoformas de Proteínas/genética , Sinais Direcionadores de Proteínas/genética , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo
8.
Immunol Lett ; 263: 87-96, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37722567

RESUMO

Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid and choline, plays multiple roles in inflammation. We investigated the therapeutic effects of the newly developed PLD1 inhibitors A2998, A3000, and A3773 in vitro and in vivo rheumatoid arthritis (RA) model. A3373 reduced the levels of LPS-induced TNF-α, IL-6, and IgG in murine splenocytes in vitro. A3373 also decreased the levels of IFN-γ and IL-17 and the frequencies of Th1, Th17 cells and germinal-center B cells, in splenocytes in vitro. A3373 ameliorated the severity of collagen-induced arthritis (CIA) and suppressed infiltration of inflammatory cells into the joint tissues of mice with CIA compared with vehicle-treated mice. Moreover, A3373 prevented systemic bone demineralization in mice with CIA and suppressed osteoclast differentiation and the mRNA levels of osteoclastogenesis markers in vitro. These results suggest that A3373 has therapeutic potential for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Fosfolipase D , Camundongos , Animais , Osteoclastos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Fosfolipase D/genética , Fosfolipase D/farmacologia , Fosfolipase D/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Diferenciação Celular , Citocinas/genética , Células Th17/patologia
9.
Protein Sci ; 32(7): e4701, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313620

RESUMO

The glycerophosphodiester phosphodiesterase (GDPD)-like SMaseD/PLD domain family, which includes phospholipase D (PLD) toxins in recluse spiders and actinobacteria, evolved anciently in bacteria from the GDPD. The PLD enzymes retained the core (ß/α)8 barrel fold of GDPD, while gaining a signature C-terminal expansion motif and losing a small insertion domain. Using sequence alignments and phylogenetic analysis, we infer that the C-terminal motif derives from a segment of an ancient bacterial PLAT domain. Formally, part of a protein containing a PLAT domain repeat underwent fusion to the C terminus of a GDPD barrel, leading to attachment of a segment of a PLAT domain, followed by a second complete PLAT domain. The complete domain was retained only in some basal homologs, but the PLAT segment was conserved and repurposed as the expansion motif. The PLAT segment corresponds to strands ß7-ß8 of a ß-sandwich, while the expansion motif as represented in spider PLD toxins has been remodeled as an α-helix, a ß-strand, and an ordered loop. The GDPD-PLAT fusion led to two acquisitions in founding the GDPD-like SMaseD/PLD family: (1) a PLAT domain that presumably supported early lipase activity by mediating membrane association, and (2) an expansion motif that putatively stabilized the catalytic domain, possibly compensating for, or permitting, loss of the insertion domain. Of wider significance, messy domain shuffling events can leave behind scraps of domains that can be salvaged, remodeled, and repurposed.


Assuntos
Fosfolipase D , Fosfolipase D/genética , Fosfolipase D/química , Fosfolipase D/metabolismo , Sequência de Aminoácidos , Filogenia , Alinhamento de Sequência , Domínio Catalítico , Bactérias/metabolismo
10.
Lett Appl Microbiol ; 76(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37073086

RESUMO

Plasmalogens are a subclass of glycerophospholipids that have a vinyl-ether bond at the sn-1 position and are thought to have several physiological functions. The creation of non-natural plasmalogens with functional groups is desired for the establishment of the prevention of diseases caused by the depletion of plasmalogens. Phospholipase D (PLD) has both hydrolysis and transphosphatidylation activities. In particular, PLD from Streptomyces antibioticus has been investigated extensively due to its high transphosphatidylation activity. However, it has been difficult to stably express recombinant PLD in Escherichia coli and to express it as a soluble protein. In this study, we used the E. coli strain, SoluBL21™, and achieved stable PLD expression from the T7 promoter and increased soluble fraction in the cell. We also improved the purification method of PLD using His-tag at the C terminus. We obtained PLD with ∼730 mU mg-1 protein of specific activity, and the yield was ∼420 mU l-1 culture, corresponding to 76 mU per gram of wet cells. Finally, we synthesized a non-natural plasmalogen with 1,4-cyclohexanediol bound to the phosphate group at the sn-3 position by transphosphatidylation of the purified PLD. This method will contribute to the expansion of the chemical structure library of non-natural plasmalogens.


Assuntos
Fosfolipase D , Streptomyces antibioticus , Plasmalogênios/metabolismo , Streptomyces antibioticus/metabolismo , Fosfolipase D/genética , Fosfolipase D/química , Escherichia coli/genética , Escherichia coli/metabolismo , Solubilidade
11.
Appl Biochem Biotechnol ; 195(12): 7808-7820, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37093529

RESUMO

Phospholipase D (PLD) with the higher transphosphatidylation activity was screened from Streptomyces sp. LD0501 basing on the protoplast mutagenesis technology. Then, it was successfully bio-imprinted to form a hyperactivated structure and rigidified by the intramolecular cross-linking, which was immobilized on the nonporous nanoscale silica. Characterization techniques were employed to investigate the structure and physicochemical properties of the catalysts, including Fourier transform infrared (FTIR) spectra and scanning electron microscopy (SEM) analysis. Transphosphatidylation activity and selectivity were improved significantly when immobilized PLD was used. The maximum yield for the production of phosphatidylserine (PS) reached 97% and the side reaction, the hydrolysis, was minimized. These results were further confirmed by the nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. The imprint-induced characteristics of PLD was successfully "remembered" even in the present of much water. In addition, this immobilized hyperactivated PLD showed the excellent operational stabilities and environmental tolerances.


Assuntos
Fosfolipase D , Fosfolipase D/genética , Fosfolipase D/química , Catálise , Água/química , Espectroscopia de Ressonância Magnética , Fosfatidilserinas/química
12.
Biochimie ; 211: 122-130, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36963559

RESUMO

Loxosceles spider envenomation results in dermonecrosis, principally due to phospholipases D (PLDs) present in the venom. These enzymes have a strongly conserved sequence, 273ATXXDNPW280, in the C-terminal region (SMD-tail) that make contact with ß-sheets of the TIM barrel, in which the amino acids Asp277 and Trp280 establish the energetically strongest contacts. The SMD-tail is conserved in PLDs from different species but absent in the non-toxic PLD ancestral glycerophosphodiester phosphodiesterases (GDPDs). This work aims to understand the role of the C-terminal region in the structural stability and/or function of phospholipases D. Through site-directed mutagenesis of the rLiD1 protein (recombinant Loxosceles intermedia dermonecrotic protein 1), we produced two mutants: rLiD1D277A and rLiD1W280A (both with sphingomyelinase activity), in which Asp277 and Trp280 were replaced by alanine. rLiD1D277A showed similar sphingomyelinase activity but at least 2 times more dermonecrotic activity than rLiD1 (wild-type protein). Conversely, while the rLiD1W280A displayed a slight increase in sphingomyelinase activity, its biological activity was similar or lower compared to rLiD1, potentially due to its decreased thermostability and formation of amyloid aggregates. In conclusion, these new findings provide evidence that SMD-tail mutants impact the structure and function of these proteins and point out that residues outside the active site can even increase the function of these enzymes.


Assuntos
Fosfolipase D , Venenos de Aranha , Aranhas , Animais , Fosfolipase D/genética , Fosfolipase D/química , Fosfolipase D/metabolismo , Domínio Catalítico , Esfingomielina Fosfodiesterase , Diester Fosfórico Hidrolases/genética , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Aranhas/genética , Venenos de Aranha/genética , Venenos de Aranha/química
13.
J Mol Endocrinol ; 70(4)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779781

RESUMO

Aldosterone is considered to be a link between hypertension and obesity; obese individuals have high serum levels of very low-density lipoprotein (VLDL). VLDL has been shown to induce aldosterone production in multiple adrenal zona glomerulosa models, mediated in part by phospholipase D (PLD). PLD is an enzyme that hydrolyzes phosphatidylcholine to produce phosphatidic acid (PA), a lipid second messenger that can also be dephosphorylated by lipin to yield diacylglycerol (DAG), yet another lipid signal. However, it is unclear which of the two lipid second messengers, PA or DAG, underlies PLD's mediation of aldosterone production. We hypothesized that the key signal produced by PLD (indirectly) is DAG such that PLD mediates VLDL-induced aldosterone production via lipin-mediated metabolism of PA to DAG. To assess the role of lipin in VLDL-induced aldosterone production, lipin-1 was overexpressed (using an adenovirus) or inhibited (using propranolol) in HAC15 cells followed by treatment with or without VLDL. Lipin-1 overexpression enhanced the VLDL-stimulated increase in CYP11B2 expression (by 75%), and lipin-1 inhibition decreased the VLDL-stimulated increase in CYP11B2 expression (by 66%). Similarly, the VLDL-stimulated increase in aldosterone production was enhanced by lipin-1 overexpression (182%) and was decreased by lipin inhibition (80%). Our results are suggestive of DAG being the key lipid signal since manipulating lipin-1 levels/activity affects VLDL-stimulated steroidogenic gene expression and ultimately, aldosterone production. Our study warrants further investigation into VLDL-stimulated steroidogenic signaling pathways which may lead to the identification of novel therapeutic targets, such as lipin-1 and its downstream pathways, to potentially treat obesity-associated hypertension.


Assuntos
Aldosterona , Fosfolipase D , Humanos , Aldosterona/metabolismo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Fosfolipase D/farmacologia , Células Cultivadas , Lipoproteínas VLDL/metabolismo , Lipoproteínas VLDL/farmacologia , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Lipoproteínas LDL
14.
Plant Commun ; 4(3): 100500, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36447433

RESUMO

Membrane fluidity, permeability, and surface charges are controlled by phospholipid metabolism and transport. Despite the importance of phosphatidic acid (PA) as a bioactive molecule, the mechanical properties of PA translocation and subcellular accumulation are unknown. Here, we used a mobilizable, highly responsive genetically encoded fluorescent indicator, green fluorescent protein (GFP)-N160RbohD, to monitor PA dynamics in living cells. The majority of GFP-N160RbohD accumulated at the plasma membrane and sensitively responded to changes in PA levels. Cellular, pharmacological, and genetic analyses illustrated that both salinity and abscisic acid rapidly enhanced GFP-N160RbohD fluorescence at the plasma membrane, which mainly depended on hydrolysis of phospholipase D. By contrast, heat stress induced nuclear translocation of PA indicated by GFP-N160RbohD through a process that required diacylglycerol kinase activity, as well as secretory and endocytic trafficking. Strikingly, we showed that gravity triggers asymmetric PA distribution at the root apex, a response that is suppressed by PLDζ2 knockout. The broad utility of the PA sensor will expand our mechanistic understanding of numerous lipid-associated physiological and cell biological processes and facilitate screening for protein candidates that affect the synthesis, transport, and metabolism of PA.


Assuntos
Ácidos Fosfatídicos , Fosfolipase D , Ácidos Fosfatídicos/análise , Ácidos Fosfatídicos/metabolismo , Membrana Celular/metabolismo , Transporte Biológico , Fosfolipase D/genética , Fosfolipase D/metabolismo
15.
Microb Cell Fact ; 21(1): 263, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36529749

RESUMO

BACKGROUND: Phospholipase D (PLD) is highly valuable in the food and medicine industries, where it is used to convert low-cost phosphatidylcholine into high-value phospholipids (PLs). Despite being overexpressed in Streptomyces, PLD production requires expensive thiostrepton feeding during fermentation, limiting its industrialization. To address this issue, we propose a new thiostrepton-free system. RESULTS: We developed a system using a combinatorial strategy containing the constitutive promoter kasOp* and PLD G215S mutation fused to a signal peptide sigcin of Streptoverticillium cinnamoneum pld. To find a candidate vector, we first expressed PLD using the integrative vector pSET152 and then built three autonomously replicating vectors by substituting Streptomyces replicons to increase PLD expression. According to our findings, replicon 3 with stability gene (sta) inserted had an ideal result. The retention rate of the plasmid pOJ260-rep3-pld* was 99% after five passages under non-resistance conditions. In addition, the strain SK-3 harboring plasmid pOJ260-rep3-pld* produced 62 U/mL (3.48 mg/g) of PLD, which further improved to 86.8 U/mL (7.51 mg/g) at 32 °C in the optimized medium, which is the highest activity achieved in the PLD secretory expression to date. CONCLUSIONS: This is the first time that a thiostrepton-free PLD production system has been reported in Streptomyces. The new system produced stable PLD secretion and lays the groundwork for the production of PLs from fermentation stock. Meanwhile, in the Streptomyces expression system, we present a highly promising solution for producing other complex proteins.


Assuntos
Fosfolipase D , Streptomyces lividans , Fosfolipase D/genética , Fosfolipase D/metabolismo , Plasmídeos/genética , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Tioestreptona/metabolismo
16.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362078

RESUMO

Phospholipase D (PLD) isoenzymes participate in a variety of cellular functions that are mostly attributed to phosphatidic acid (PA) synthesis. Dysregulation of PLD regulates tumor progression and metastasis, yet little is known about the underlying mechanism. We previously reported on the expression and clinical role of the PLD isoenzymes PLD1 and PLD2 in tubo-ovarian high-grade serous carcinoma (HGSC). In the present study, we investigated the biological function of PLD1 and PLD2 using the OVCAR-3 and OVCAR-8 HGSC cell lines. KO cell lines for both PLDs were generated using CRISPR/CAS9 technology and assayed for exosome secretion, spheroid formation, migration, invasion and expression of molecules involved in epithelial-mesenchymal transition (EMT) and intracellular signaling. Significant differences between PLD1 and PLD2 KO cells and controls were observed for all the above parameters, supporting an important role for PLD in regulating migration, invasion, metastasis and EMT.


Assuntos
Exossomos , Neoplasias Ovarianas , Fosfolipase D , Feminino , Humanos , Apoptose , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Exossomos/metabolismo , Isoenzimas , Neoplasias Ovarianas/genética , Fosfolipase D/genética , Fosfolipase D/metabolismo
17.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232620

RESUMO

Mining of Phospholipase D (PLD) with high activity and stability has attracted strong interest for investigation. A novel PLD from marine Moritella sp. JT01 (MsPLD) was biochemically and structurally characterized in our previous study; however, the short half-life time (t1/2) under its optimum reaction temperature seriously hampered its further applications. Herein, the disulfide bond engineering strategy was applied to improve its thermostability. Compared with wild-type MsPLD, mutant S148C-T206C/D225C-A328C with the addition of two disulfide bonds exhibited a 3.1-fold t1/2 at 35 °C and a 5.7 °C increase in melting temperature (Tm). Unexpectedly, its specific activity and catalytic efficiency (kcat/Km) also increased by 22.7% and 36.5%, respectively. The enhanced activity might be attributed to an increase in the activation entropy by displacing more water molecules by the transition state. The results of molecular dynamics simulations (MD) revealed that the introduction of double disulfide bonds rigidified the global structure of the mutant, which might cause the enhanced thermostability. Finally, the synthesis capacity of the mutant to synthesize phosphatidic acid (PA) was evaluated. The conversion rate of PA reached about 80% after 6 h reaction with wild-type MsPLD but reached 78% after 2 h with mutant S148C-T206C/D225C-A328C, which significantly reduced the time needed for the reaction to reach equilibrium. The present results pave the way for further application of MsPLD in the food and pharmaceutical industries.


Assuntos
Moritella , Fosfolipase D , Dissulfetos/química , Estabilidade Enzimática , Ácidos Fosfatídicos , Fosfolipase D/genética , Engenharia de Proteínas/métodos , Temperatura , Água
18.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233124

RESUMO

We previously described the participation of canonical phospholipase D isoforms (PLD1 and PLD2) in the inflammatory response of retinal pigment epithelium (RPE) cells exposed to high glucose concentrations (HG). Here, we studied the role of the PLD pathway in RPE phagocytic function. For this purpose, ARPE-19 cells were exposed to HG (33 mM) or to normal glucose concentration (NG, 5.5 mM) and phagocytosis was measured using pHrodo™ green bioparticles® or photoreceptor outer segments (POS). HG exposure for 48 and 72 h reduced phagocytic function of ARPE-19 cells, and this loss of function was prevented when cells were treated with 5 µM of PLD1 (VU0359595 or PLD1i) or PLD2 (VU0285655-1 or PLD2i) selective inhibitors. Furthermore, PLD1i and PLD2i did not affect RPE phagocytosis under physiological conditions and prevented oxidative stress induced by HG. In addition, we demonstrated PLD1 and PLD2 expression in ABC cells, a novel human RPE cell line. Under physiological conditions, PLD1i and PLD2i did not affect ABC cell viability, and partial silencing of both PLDs did not affect ABC cell POS phagocytosis. In conclusion, PLD1i and PLD2i prevent the loss of phagocytic function of RPE cells exposed to HG without affecting RPE function or viability under non-inflammatory conditions.


Assuntos
Fosfolipase D , Linhagem Celular , Células Cultivadas , Glucose/metabolismo , Humanos , Fagocitose/fisiologia , Fosfolipase D/genética , Fosfolipase D/metabolismo , Epitélio Pigmentado da Retina/metabolismo
19.
Nat Commun ; 13(1): 5979, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216841

RESUMO

PldA, a phospholipase D (PLD) effector, catalyzes hydrolysis of the phosphodiester bonds of glycerophospholipids-the main component of cell membranes-and assists the invasion of the opportunistic pathogen Pseudomonas aeruginosa. As a cognate immunity protein, PA3488 can inhibit the activity of PldA to avoid self-toxicity. However, the precise inhibitory mechanism remains elusive. We determine the crystal structures of full-length and truncated PldA and the cryogenic electron microscopy structure of the PldA-PA3488 complex. Structural analysis reveals that there are different intermediates of PldA between the "open" and "closed" states of the catalytic pocket, accompanied by significant conformational changes in the "lid" region and the peripheral helical domain. Through structure-based mutational analysis, we identify the key residues responsible for the enzymatic activity of PldA. Together, these data provide an insight into the molecular mechanisms of PldA invasion and its neutralization by PA3488, aiding future design of PLD-targeted inhibitors and drugs.


Assuntos
Fosfolipase D , Pseudomonas aeruginosa , Proteínas de Bactérias/metabolismo , Glicerofosfolipídeos , Fosfolipase D/genética , Fosfolipase D/metabolismo , Pseudomonas aeruginosa/metabolismo
20.
Curr Oncol ; 29(10): 7680-7694, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36290884

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a type of progressive and distant metastatic tumor. Targeting anti-angiogenic genes could effectively hinder ESCC development and metastasis, whereas ESCC locating on the upper or the lower esophagus showed different response to the same clinical treatment, suggesting ESCC location should be taken into account when exploring new therapeutic targets. In the current study, to find novel anti-angiogenic therapeutic targets, we identified endothelial cell subsets in upper and lower human ESCC using single-cell RNA sequencing (scRNA-seq), screened differentially expressed genes (DEGs), and performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The results showed that common DEGs shared in the upper and the lower endothelial cells mainly are involved in vessel development, angiogenesis, and cell motility of endothelial cells by regulating PI3K-AKT, Rap1, Ras, TGF-beta, and Apelin signaling pathways. The critical regulatory genes were identified as ITGB1, Col4A1, Col4A2, ITGA6, LAMA4, LAMB1, LAMC1, VWF, ITGA5, THBS1, PDGFB, PGF, RHOC, and CTNNB1. Cell metabolism-relevant genes, e.g., MGST3, PNP, UPP1, and HYAL2 might be the prospective therapeutic targets. Furthermore, we found that DEGs only in the upper endothelial cells, such as MAPK3, STAT3, RHOA, MAPK11, HIF1A, FGFR1, GNG5, GNB1, and ARHGEF12, mainly regulated cell adhesion, structure morphogenesis, and motility through Phospholipase D, Apelin, and VEGF signaling pathways. Moreover, DEGs only in the lower endothelial cells, for instance PLCG2, EFNA1, CALM1, and RALA, mainly regulated cell apoptosis and survival by targeting calcium ion transport through Rap1, Ras, cAMP, Phospholipase D, and Phosphatidylinositol signaling pathways. In addition, the upper endothelial cells showed significant functional diversity such as cytokine-responsive, migratory, and proliferative capacity, presenting a better angiogenic capacity and making it more sensitive to anti-angiogenic therapy compared with the lower endothelial cells. Our study has identified the potential targeted genes for anti-angiogenic therapy for both upper and lower ESCC, and further indicated that anti-angiogenic therapy might be more effective for upper ESCC, which still need to be further examined in the future.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Fosfolipase D , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Apelina/genética , Apelina/metabolismo , Transcriptoma , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , Efrina-A1/genética , Efrina-A1/metabolismo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Cálcio/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fosfatidilinositóis , Prostaglandinas F
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA